
1 | P a g e

Last Updated: 23 January 2015

Prepared by: Kevin McGarigal

FRAGSTATS 4 Tutorial

This tutorial is intended to provide FRAGSTATS users a "quick start" on how to use the
software. All of the necessary data and files for the tutorial have been provided and these
can be used as templates for how to format your own files latter on. However, this
tutorial is not a substitute for the complete FRAGSTATS user manual; all serious
FRAGSTATS users are responsible for understanding all of the information in the user
manual.

The tutorial is actually a series of short tutorials designed to demonstrate some of the
basic features of FRAGSTATS; it is not intended to be a comprehensive guide, but rather
a guide to help new users get started. The tutorials include the following:

1. Setting Up Software and Inspecting Grids -- Covers the basic setup of
the software and computer for running FRAGSTATS and an inspection of the
grids that will be used in the subsequent tutorials. All users should complete
this tutorial.

2. Analyzing a single grid -- Covers the essential steps involved in analyzing
a single grid, including the use of ancillary tables for calculating functional
metrics.

3. Batch processing multiple grids -- Covers the use of batch files for
processing multiple grids at once.

4. Moving window analysis -- Covers the use of a moving window analysis to
create local landscape structure gradients.

5. Running the command line version from R -- Covers the execution of
FRAGSTATS command line version from R (programming environment and
statistical computing environment).

6. Using sampling strategies to analyze sub-landscapes -- Covers the
use of various sampling strategies to analyze sub-landscapes, including 1)
exhaustive sampling using a user-provided, moving window, or systematic
tiling scheme, and 2) partial sampling based on user-specified windows
around user-provided or random sample points.

2 | P a g e

Tutorial 1. Setting Up Software and Inspecting Grids

In this tutorial, you will setup the software and inspect the grids to be analyzed in the
subsequent tutorials.

1. Download and install FRAGSTATS

First, if you haven't already done so, download FRAGSTATS 4.x and run the setup utility
to install the software on your computer.

2. [Optional] Setup your Computer for use with ESRI ArcGIS

If you intend to work with geotiff (preferred format), ascii, or any of the other data
formats except ESRI ArcGIS data, you can skip this step. However, if you have a valid
ESRI ArcGIS license (version 10 or earlier) with Spatial Analyst or ArcView 3.3
Spatial Analyst and intend to work with ArcGrids (or Rasters), then there are two
important requirements, as follows:

First, you need to edit your computer system's environmental "path" variable.
Specifically, FRAGSTATS must have access to the aigridio.dll library found in the “bin”
(for ArcGIS installation) or the avgridio.dll library found in the “bin32" (for ArcView 3.3
installation) directory. Note, the paths may differ depending on your version and
installation. Search your computer for the corresponding file and copy the path to the
bin or bin32 directory, as appropriate. Note, the path does NOT include the aigridio.dll
or avgridio.dll file name; it ends with bin or bin32. For example, for an ArcGIS 10
installation, the path might look like: C:\Program Files (x86)\ArcGIS\Desktop10.0\Bin

The path to the corresponding bin directory should be specified in the windows system
environmental variable, as follows:

In Windows 7, the Environment variables can be accessed and edited from the Control
Panel - System and Security - System - Advanced system settings under the “Advanced”
tab and by clicking on “Environment Variables” (at the bottom of the dialog on the
"Advanced" tab), as show in the figure below. In the list of System variables, select the
“path” variable and select “edit” and add the path to the corresponding bin directory
(e.g., ; C:\Program Files (x86)\ArcGIS\Desktop10.0\Bin). Note, you need a semicolon
between each path in the list and make sure you enter the correct path on your system.

If you are using a different Windows operating system, you'll have to figure out how to
find the system environment variables, then edit the path variable as above.

3 | P a g e

Second, if you intend to use the ArcGrids with ArcGIS version 10.0 or earlier you need
to make sure that the ArcGrids included with this tutorial are located in a directory on
your disk that does NOT contain any spaces in the full path. For example, if you have the
tutorial grid reg78b located in the following directory:

C:\Documents and Settings\Fragstats\Tutorial_1\reg78b

you will get the following error message when attempting to Run FRAGSTATS:

Error: Unexpected error encountered: [cannot_set_access_window for: C:\Documents
and Settings\Fragstats\Tutorial_1\reg78b]. Model execution halted.

4 | P a g e

This is an irreconcilable problem with ESRI and the only solution is to put all your grids,
including those included in this tutorial, in a directory that does NOT contain spaces.
Note, this is probably good practice anyways, since there are other software programs
that cannot deal properly with spaces in the path.

3. Inspect the grids

Next, inspect the grids to make sure you understand the landscape definition before
analyzing them, since the results of the analysis can only be interpreted in the context of
the landscape definition.

Geotiff/ArcGIS grids.--If you are planning on working with Geotiffs (preferred
format) or ESRI ArcGIS grids and have ESRI ArcGIS installed, open up the provided
fragtutorial_1.mxd project in ArcMap. Note, if you are using ArcGIS 9.3, open the
provided fragtutorial_1_9.3.mxd. The project contains several data layers, as listed
in the table of contents, including a landcover grid (lugrid.tif) for an arbitrary extent in
western Massachusetts, and all are Geotiffs.

5 | P a g e

As you can see from the legend, the lugrid.tif contains six landcover classes, including:
1) open (largely agriculture), 2) residential, 3) water (open water bodies and large
rivers), 4) forest, 5) wetland, and 6) urban.

Open the lugrid layer properties and inspect the grid properties on the Source tab. In
particular, note the grid dimensions (1104 columns by 1035 rows), cell size (50 m),
format (GRID), and pixel type (signed integer). The signed integer pixel type is
necessary if the landscape has a border; i.e., strip of classified cells outside the landscape
boundary and assigned negative class values. If the landscape does not contain a border,
then an unsigned integer type is OK. In this case, the lugrid does not contain a border,
but the sub-landscapes (below) do, so the pixel type has been set to signed integer.

Next, open the lugrid layer attribute table and inspect the class values present on the
grid. Note the class values and text description for each class. You will need to know the
class values later on.

6 | P a g e

Next, view the reg78b.tif
grid by selecting it in the
table of contexts and
zooming to the layer extent.
This grid is a randomly
selected roughly 5x5 km (25
km2) square sub-landscape
sampled from the lugrid.
Expand the legend and note
the landcover classes
present; it has the same six
landcover classes as before,
but with the addition of six "border" classes.

The border is simply a strip of classified cells surrounding the landscape of interest
that provides information on patch type adjacency along the landscape boundary. In the
legend provided, the border classes have been assigned a lighter shade of the color
assigned to the corresponding class inside the landscape boundary. Importantly, a
border is identified in FRAGSTAST by negatively valued cells. An inspection of the grid

7 | P a g e

attribute table reveals the same six landcover classes as
before, but with both a positive (inside the landscape
boundary) and negative (border, or outside the landscape
boundary) version of each class. Note, I created all three of
the grids in this project containing borders (reg78b,
reg66b and reg21b) using the fragborder.aml script
provided. This aml (arc macro language) is executed from
the arc prompt and requires ArcInfo Workstation. Briefly,
the script clips the lugrid layer with a polygon coverage for
one of the sub-landscapes, and then buffers the polygon by
50 m and clips the lugrid layer again but with the buffered
(i.e., slightly larger) polygon. Next, the larger grid is
multiplied by -1 to convert the cell values to negative.
Lastly, the two grids are merged, with the smaller grid (the
sub-landscape of interest) on top, resulting in positive
values everywhere except the narrow strip of cells in the
border.

Lastly, view the other sub-landscape grids in the table of
contents. There are three different sub-landscapes: reg78,
reg66, and reg21, each of which also contains a version with a landscape border: reg78b,
reg66b, and reg21b. These landscape differ largely in the amount of forest landcover.

Ascii/binary grids.--If you are planning on working with ascii or binary grids, open
up the provided files in a text editor and inspect them. Ascii files are interpretable,
binary files are not. Neither are pretty to look at and you can't do much with them, but it
is useful to know what these files look like.

Open up reg78b2.asc in a text editor (the top left portion of this file is shown below).
This a space-delimited ascii file (i.e., there is a space between each cell entry) and is
therefore interpretable. Note, this ascii file was created by converting the reg78b
ArcGrid to an ascii file in ArcMap. Note the header information included in the first six
lines of the file. This header information must be deleted before it can be analyzed in
FRAGSTATS; however, the information on the grid dimensions (ncols=102 and
nrows=102), cellsize (50), and nodata value (-9999) will be needed later when
parameterizing the FRAGSTATS model. In particular, note the landscape border
indicated by the negative class values in the first row and column.

8 | P a g e

Viewing the ascii grids is a bit more difficult without importing them into your favorite
GIS. However, if you are an R user, you can use the following script (or open the
provided script, tutorial_1.R) to plot the grid in R. Note, there are several ways to plot
the grids in R. If you are familiar with the Raster package, you can import the ascii grids
and plot them quite easily, but specifying a color scheme for the legend and plotting a
pretty legend is a bit tricky. The following script makes use of the base functions in the
Graphics library:

First, set the working directory to wherever you have installed the tutorial; e.g.:

 setwd('c:/work/fragstats/tutorial/tutorial_1')

Next, read in the ascii grid, as a matrix, into an object (m):

 m<-as.matrix(read.table('reg78b.asc'))

Next, in order to assign colors to each landcover class, identify each unique class value:

 uv<-sort(unique(as.vector(m)))

Next, create breaks for assigning colors to class values (breaks are at the minimum -1,
midpoints and maximum +1). Note, this is necessary because the plot function (image)
is designed for continuous variables not categorical variables as is the case with the
landcover image:

 my.breaks<- (c(min(uv)-2, uv) + c(uv, max(uv)+2))/2

Next, create a color legend for the plot:

9 | P a g e

 my.colors<-c('gray','lightskyblue','lightgreen','lightpink','lightyellow','yellow',
 'purple','slateblue','green','skyblue','black')

Next, check to make sure you have a color for every unique class value:

if(length(my.colors) != length(uv)) stop("You need a color for every unique
value")

Next, print to the console the color associated with each class value to verify that you
have what you want:

 data.frame(code=uv, color=my.colors)

Finally, plot the image with the image() function in the graphic library. Note, because
the image() function does a 90 degree counter-clockwise rotation of the image, a matrix
transpose and some indexing is necessary to rotate the image back to its original
orientation:

 image(t(m)[,nrow(m):1],asp=1,breaks=my.breaks,col=my.colors

10 | P a g e

Tutorial 2. Analyzing a Single Grid

In this tutorial, you will compute a suite of structural and functional patch, class and
landscape metrics for a single input grid.

1. Open FRAGSTATS

First, open FRAGSTATS from the
start menu or by double clicking on
the FRAGSTATS icon on the
desktop. Note, if you have an ESRI
ArcGIS (v10.0 or earlier)
installation, there may be a
significant delay (up to 30 seconds
in some cases) in opening the user
interface as FRAGSTATS tries to
secure a valid ArcGIS license, so be
patient -- and don't forget to thank
ESRI for their license management
while you're waiting.

If FRAGSTATS does not open or you get a runtime initialization error or any other kind
of error, it probably means that you have ArcGIS installed on your machine and there is
problem securing a valid license for Spatial Analyst. If you are sure that you followed the
installation instructions and/or followed the instructions in Tutorial #1 step 2, then
download the Diagnostic Tool from the FRAGSTATS website and after extracting the
utility from the zip file, run the utility and copy the report and submit it in an email to
mcgarigalk@eco.umass.edu, along with a detailed description of your setup.

Note, if you have ArcGIS installed on your machine, but either you don't have a valid
Spatial Analyst license or you simply don't want to run FRAGSTATS with ArcGrids, then
be sure that your system's environmental "path" variable does NOT contain a path to
ArcGIS. If your system's path variable contains ArcGIS, FRAGSTATS thinks you are an
ArcGIS user and that you want to use ArcGrids, and it tries to secure a valid Spatial
Analyst license. Unfortunately, to use FRAGSTATS in this situation, you will have to
remove ArcGIS from your system's path variable.

2. Create a New model

Next, you need to create a FRAGSTATS "model" for a categorical landscape representing
the patch mosaic model of landscape structure. A FRAGSTATS model is simply a file
containing a complete parameterization of FRAGSTATS; i.e., everything needed to

mailto:mcgarigalk@eco.umass.edu

11 | P a g e

conduct an analysis. Click on the New button on the tool bar or select New from the
File drop-down menu. This creates a blank model for you to parameterize.

3. Import a grid

Next, import a grid to analyze. Specifically, you need to Add a layer to the batch
manager on the Input layers tab. Click on the Add layer button to open the import data
dialog.

12 | P a g e

Select GeoTIFF data type in the left pane and then navigate to the tutorial directory by
clicking on the [...] button and selecting the reg78b.tif grid. Note, when you load a
Geotiff (or ArcGrid), the grid attribute information pertaining to row count (y), column
count (x), cell size, and nodata value are read from the grid header itself, and thus these
fields are grayed out in the dialog. The only grid attribute item that you need worry
about (and can modify) is the background value.

By default the background class value is set to 999, but you can change it here to any
class value that you want, so long as you understand the implications. Briefly,
background is a class used to distinguish cells that you essentially want to ignore in the
analysis; these can be cells that couldn't be classified to a real landcover class for lack of
data, or cells that you simply want to treat as part of the background matrix in the
landscape. Importantly, background cells can be considered 'internal' or 'inside' the
landscape of interest (if assigned positive values) and/or 'external' or 'outside' the
landscape of interest (if assigned negative values). Internal background is considered
part of the landscape of interest and contributes to the total landscape area, and thus
affects many metrics; external background is not considered to be part of the landscape
of interest and only contributes to edge adjacency information for cells along the
landscape boundary. To fully understand the implications of designating background, be
sure to read the help files on nodata, backgrounds, borders, and boundaries in the
section on User guidelines - Overview. Importantly, as a general rule, you should never
set the background value equal to the nodata value. If you set the background value
equal to the nodata value, and you have internal background, FRAGSTATS cannot
distinguish between them and all background (internal and external) and nodata will be
treated the same, as external background. For now, keep the background value set to
999.

13 | P a g e

If you are using ascii or binary files, you can select the corresponding data type in the
left pane and then navigate to the tutorial directory by clicking on the [...] button and
selecting the corresponding grid. For example, to use the provided ascii grid, select
reg78b.asc. Note, when you try to load an ascii grid or binary grid, the grid attribute
information must be entered manually. If you don't enter this information before
selecting the grid, the software will complain that the layer attributes are invalid, so be
sure to enter valid numbers for each of the attributes after selecting the grid.
Specifically, for this grid, you need to enter row count (y) = 102, column count (x) =
102, cell size = 50, and nodata value = 9999. As with ArcGrids, you can also edit the
background class value, but for now, keep the default value of 999.

4. Optionally, input a class descriptors table

Next, you have the option of inputting a class descriptors table. The class descriptors
table allows you to specify a character description (i.e., patch type) for each numeric
class value, specify whether to compute statistics for each class, and whether to
designate each class as background. The class descriptors table is optional. If you do not
provide this table, then the numeric class values are used in the output, all classes are
enabled and none are treated as background except any class with the assigned
background value (999 in this case).

Open up the provided descriptors.fcd file in a text editor. Note, FRAGSTATS
recognizes .fcd as the extension for class descriptor files, but this is not a required
extension. This file contains four fields. ID
refers to the numeric class values; these are
the unique cell values in the grid. These
values derive from your landscape
definition. Name is simply a description of
each class and this will be output as TYPE in
the FRAGSTATS output files. Enabled is a

14 | P a g e

logical (true or false) and indicates whether to compute and output statistics for the
corresponding class. Lastly, IsBackground is logical (true or false) and indicates
whether to treat each class as background or not. Note, a "true" involves reclassifying
the corresponding class to the background value specified earlier (999 in this case). If
we had specified say, 400, as the background value earlier, then Water would be treated
as background regardless of what is designated in this table.

To use the provided class descriptors file, click on the Class descriptors Browse
button in the Common tables section of the user interface on the Input layers tab and
navigate to the tutorial directory and select the descriptors.fcd file.

5. Specify additional parameters for the analysis

Next, you need to specify some additional parameters for the analysis. Click on the
Analysis parameters tab on the left pane of the user interface. Here, is where you
chose the neighbor rule for delineating patches (4 cell rule or 8 cell rule) and specify
whether you want to sample the landscape to analyze sub-landscapes using one of the
alternative sampling schemes (see tutorial #6).

For this tutorial, keep the default 8 cell neighbor rule and the No sampling strategy;
the exhaustive moving window sampling strategy is covered in tutorial #4 and the rest

15 | P a g e

of the sampling strategies in tutorial #6. In addition, check the boxes for Patch, Class
and Landscape metrics under the No sampling option. Note, you must have at least
one of the these boxes checked or you will get an error message later when trying to run
the model. However, only check the level corresponding to the metrics you want to
compute. Some applications will involve patch level metrics, for example when
evaluating the spatial character and context of each habitat patch in a metapopulation
context. Other applications will involve only the class level metrics, for example when
evaluating the fragmentation of a focal class. And still other applications will involve
only the landscape level metrics, for example when evaluating overall landscape
heterogeneity. Of course, some applications will involve more than one level of metric.

There is an optional check box for generating a patch ID file. If checked, FRAGSTATS
will generate a patch ID grid in the same format as the input layer, and each cell will be
assigned a unique patch ID value. Thus, all the cells belonging to patch #1 will be
assigned the value 1, all cells in patch #2 will be assigned the value 2, and so on. The
unique patch ID values will correspond to the unique patch ID values in the PID field of
the basename.patch output file. In this manner, the patch ID file can be used to connect
the patch metric results to the corresponding patch in the landscape. In fact, the
basename.patch outfile can be joined to the patch ID grid in the GIS if so desired, but we
will not illustrate this here.

6. Select metrics

Next, you need to select some metrics to compute. Give that you selected patch, class
and landscape metrics in step 5, you need to select individual metrics at each of these
levels.

To begin, select Patch metrics in the top right pane of the user interface. Click on the
Patch metrics button and then on each tabbed set of metrics. You can chose a subset
of metrics or simply "Select all" -- your choice. Note, on the Aggregation tab, if you
select either the Proximity index or the Similarity index, then you also need to specify a
Search radius. These metrics are "functional" metrics and thus require additional
parameterization. Both of these metrics require a search radius; the Similarity index
also requires a similarity weights table (see below). To specify a search radius, click on
the [...] button and enter the desired search radius in meters; e.g., 500.

Next, click on the Class metrics button and then on each tabbed set of metrics. Again,
you can chose a subset of metrics or simply "Select all" -- your choice. Note, on the
Area-Edge tab, if you select Total Edge or Edge Density, then you need to consider
how you want to treat any background or boundary edge in the edge calculations. The
default is to not consider any of it as true edge. However, you can chose to treat all of it
as edge or any specified proportion as edge. To change the default, click on the [...]
button and enter your choice. Note, since the input landscape contains a border and

16 | P a g e

does not contain any designated background, the issue is mute since we know the true
status of every edge segment along the landscape boundary and there are no
background edges to worry about. Similarly, on the Aggregation tab, if you select the
Connectance index, then you also need to specify a threshold distance within which
patches are deemed "connected". Simply click on the [...] button and enter the desired
threshold distance in meters; e.g., 500.

Lastly, click on the Landscape metrics button and then on each tabbed set of metrics.
Again, you can chose a subset of metrics or simply "Select all" -- your choice. Note, on
the Diversity tab, if you select Relative Patch Richness, then you also need to specify
the maximum number of classes (or patch types). Simply click on the [...] button and
enter the value; 6 in this case.

7. Conditionally, input additional common tables

Next, if you selected any of the Core area metrics, Contrast metrics or Similarity index
(on the Aggregation tab) at any level (patch, class or landscape), then you also need to
create and input additional ancillary tables in order to parameterize these metrics. If
you fail to input these tables or try to input improperly formatted tables, you will get an
error message and the analysis will fail. Importantly, it is up to you to create these
ancillary files to ensure that they are meaningful to your application. There are no
meaningful default values for these tables; creating these tables is how you functionalize
the corresponding metrics for your particular application.

Open up the provided edgedepth.fsq file in a text editor. Note, FRAGSTATS
recognizes .fsq as the extension for these common ancillary tables, but this is not a
required extension. This comma-delimited ascii file contains the depth-of-edge effect
distances (in meters) for each pairwise combination of classes (or patch types). The file
must begin with the line: FSQ_TABLE. It can contain any number of comment lines
beginning with the character symbol #. It must contain a class list of literal names (i.e.,
class descriptors) or numeric class values corresponding exactly to those in the class
descriptors file. Note, only one of these lists is required and if both are provided, as in
the example below, only the first one encountered is used. Note, the list should include a
item for every class in the input grid. If the list contains additional classes not found in
the input grid, they are simply ignored. Similarly, if the list omits a class found in the
input grid, the edge depths are assumed to be zero by default.

The class list is followed by the edge depths for each pairwise combination of classes,
given in the order they are provided in the list, and is read as follows. The row indicates
the focal class and the column indicates the adjacent class. Thus, the fourth row is for
Forest (fourth in the list) as the focal class, and each of the entries represents the depth-
of-edge effect distance penetrating into Forest from an adjacent class. For example, in
the table below, Open has an edge effect that penetrates 100 m into Forest, Resident

17 | P a g e

penetrates 50 m into Forest, and so on. Note, in this example, edge effects are specified
only for the Forest class.

To use the provided edgedepth file, click on the Edge depth Browse button in the
Common tables section of the user interface on the Input layers tab and navigate to the
tutorial directory and select the edgedepth.fsq file.

Repeat the process above for the provided contrast.fsq and similarity.fsq tables;
these tables provide the edge contrast weights and similarity coefficients for each
pairwise combination of classes (patch types), respectively.

8. Optionally, save the model

Next, you might want to save the model for future use. Often times it is easier to open a
saved model and modify it than to create a new model from scratch. At any point in the
process of parameterizing the model, simply click on the Save or Save as buttons on
the toolbar or select these options from the File drop-down menu to save the model.
Simply navigate to the desired directory and enter a file name for the model. Note,
FRAGSTATS will automatically assign the extension .fca to the file, which identifies the
file as a model for a categorical landscape.

9. Run the model

Next, you are ready to run the model. Simply click on the Run button on the toolbar or
select this option from the Analysis drop-down menu. This will open the Run dialog that
lists the analysis type (no sampling in this case), the current file (which gets listed after
clicking on the Proceed button, below), and the number of metrics selected at each level
(patch, class and landscape). If you like what you see, click on the Proceed button,
otherwise click on Cancel and make the needed modifications to the model. In the

18 | P a g e

example shown here, the run includes 75 patch metrics, 109 class metrics and 116
landscape metrics because I selected All the available metrics at each level.

10. Browse the results

Pay attention to the Activity log in the bottom right pane of the user interface. If all went
well, you will learn that the run ended and how long it took. Assuming that the run was
successful, you are now ready to browse the results. Click on the Results button in the
top-right pane of the user interface and then on each tabbed set of results. The results
are displayed in a table for each level of metrics selected. So, if you computed patch,
class and landscape metrics, as was done here, there will be results in each of the
corresponding tabs. Otherwise, only the tab corresponding to the level of metrics
computed will contain data; the others will be empty. The Patch tab will contain a row
for each patch in the input landscape and a column for each patch metric selected. The
Class tab will contain a row for each (non-background) class in the input landscape and
a column for each class metric selected. The Landscape tab will contain a single row
for the entire input landscape mosaic and a column for each landscape metric selected.

19 | P a g e

Once you have verified that the tables contain results, the next step is probably to export
the tables so that you can use them in subsequent analyses. To export the results, simply
click on the desired run in the Run list (note, at this point you should have only one run
listed), and then click on Save run as... and navigate to the desired folder and enter a
basename for the output files. The basename will be given an extension corresponding
to each level of metrics computed (basename.patch, basename.class, and
basename.land). Thus, in this example, three files will be created corresponding to the
three levels of metrics computed. Note, a fourth output file containing the cell adjacency
information can be created by checking the Save ADJ file check box (basename.adj).
Each of these output files is a comma-delimited ascii file and can easily imported into
other software such as R and Excel for further analysis and summary.

Note that is also possible to automatically save the results with the execution by
checking the Automatically save results option on the Analysis parameters tab in
the left pane of the user interface. Simply check this box and then click on the Browse
button to navigate to a desired output directory and enter a basename for the output
file(s).

20 | P a g e

Tutorial 3: Batch processing multiple grids

In this tutorial, you will batch process multiple input grids. Note, this tutorial assumes
that you now have a basic working understanding of FRAGSTATS from completing the
first two tutorials and/or reading the detailed user guidelines that come with the
FRAGSTATS software.

1. Open FRAGSTATS

First, open FRAGSTATS from the start menu or by double clicking on the FRAGSTATS
icon on the desktop. Remember, if you have an ESRI ArcGIS (v10.0 or earlier)
installation, there may be a significant delay (up to 30 seconds in some cases) in
opening the user interface as FRAGSTATS tries to secure a valid ArcGIS license, so be
patient and don't forget to thank ESRI for their license management while you're
waiting. Note, if you have a later version of ArcGIS installed on your machine or you
don't have a valid ESRI Spatial Analyst license or you simply don't want to run
FRAGSTATS with ArcGrids, then be sure that your system's environmental "path"
variable does NOT contain a path to ArcGIS. See tutorial #1 for details.

2. Open a FRAGSTATS model

Next, open a saved FRAGSTATS model. If you saved the model from tutorial #2, you can
open that model (if is not already open). If you didn't save the model, open the provided
model by clicking on the Open button on the toolbar or select Open from the File drop-
down menu and navigate to the tutorial #3 directory and select the file named
fragmodel.fca.

3. Create and input a batch file

Next, so that we can start fresh, remove any layers that are already loaded into the
model. Specifically, click on Remove all layers in the Batch management section of
the user interface on the Input layers tab. This will delete all grids previously loaded into
the model.

Before you can import a batch file, you need to first create one. A batch file is a comma-
delimited ascii file that lists the input grids to be analyzed according to the same model
parameterization. Specifically, the batch file contains the full path and name of each
input file and a description of the grid attributes associated with each input grid,
including the cell size, background value, number of rows and columns, band number,
and data type.

21 | P a g e

GeoTIFFs.--Open the provided geotiffbatch.fbt file in a text editor. Note,
FRAGSTATS recognizes .fbt as the extension for batch files, but this is not a required
extension.

This file contains three rows, one for each input grid to analyze, and the following eight
fields:

1. Input grid: The first field contains the full path and name of the input grid. Note,
if we were using ArcGrids we would put the name of the grid folder in place of
the grid name since the grid is actually a folder containing several files.

2. Cell size: The second field contains an integer value corresponding to the cell size
(in meters).

3. Background value: The third field contains an integer value corresponding to the
designated background value. Note, any class designated as background in the
Class descriptors file (see tutorial #2) will be reclassified to this class value and
treated as background.

4. Number of rows: The fourth field contains an integer value corresponding to the
number of rows in the input image.

5. Number of columns: The fifth field contains an integer value corresponding to
the number of columns in the input image.

6. Band number: The sixth field contains an integer value corresponding to the
band number to interpret in the input image, which by default is #1 but can vary
for some of the input data formats.

7. Nodata value: The seventh field contains an integer value corresponding to the
nodata value.

8. Input data format: The last field contains a character string identifying the input
data format, with the following options corresponding to the various input data
format types: (e.g., IDF_GeoTIFF, IDF_ASCII, IDF_8BIT, IDF_ARCGRID, etc.).
Note, in this example, since the input grids are all GeoTIFFs, the grid attributes
associated with cell size, number of rows and columns, and nodata value are not
needed; an "x" is used in place of the argument.

To use the provided batch file, click on the Import batch button in the Batch
management section of the user interface on the Input layers tab and navigate to the
tutorial directory and select the geotiffbatch.fbt file.

Ascii grids (and other formats).--If you are working with ascii grids, open the
provided asciibatch.fbt file in a text editor. Note, a batch file and the corresponding
input grids are not provided for other input data formats, but it would be similar to the

22 | P a g e

one shown here except the last argument that identifies the input data format would
reflect the input data format (e.g., IDF_8BIT, IDF_GeoTIFF, etc.).

Note that with ascii files, you must specify all of the grid attributes associated with cell
size, number of rows and columns, and nodata value.

To use the provided ascii batch file, click on the Import batch button in the Batch
management section of the user interface on the Input layers tab and navigate to the
tutorial directory and select the asciibatch.fbt file.

4. Complete the model parameterization

Next, complete the model parameterization. Running a batch file does not eliminate the
necessity of completing the parameterization of FRAGSTATS; it only provides a
mechanism for running FRAGSTATS on more than one landscape without having to
parameterize and run each landscape separately. Specifically, you still must set analysis
parameters and select and parameterize the individual metrics, as described in tutorial
#2. If you haven't already completed the model parameterization to your satisfaction, do
so now (see tutorial #2 for help if you need it) or simply go with the model as
parameterized in the provided model.

5. Run the model and browse the results

Lastly, you are ready to Run the model and Browse the results, as before (see tutorial
#2). The only notable difference between this run and the previous run on a single
landscape (tutorial #2) is that the Run list in the top-right pane of the user interface
now contains is list of outputs associated with this run. Specifically, the Run list contains
a separate set of results for each of the input grids in the batch file. Click on each of the
list items to view the corresponding patch, class and landscape results. To save the
results, click on Save run as... and navigate to the desired directory and enter a
basename for the output files. Note, the basename.patch file will contain all of the
results for all of the input grids associated with this run. In this case, the file will contain
the patch metrics for all of the patches in each of the three input grids. Similarly, the
class and landscape files each will contain all of the results appended into a single file.

23 | P a g e

Tutorial 4: Moving window analysis

In this tutorial, you will quantify local landscape structure gradients via a moving
window analysis on a single input grid. Briefly, a moving window analysis places a
window (a local kernel of user-specified shape and size) over each focal cell and
computes the selected metric and returns the metric value back to the focal cell. Thus,
each window around a focal cell is treated like a sub-landscape. By repeating this
process for every cell, the end result is a surface in which the height of the surface at
each cell is equal to the value of the metric. The surface represents a gradient in local
landscape structure, and there is a separate surface for each metric selected.

Note, this tutorial assumes that you now have a basic working understanding of
FRAGSTATS from completing tutorials #1 and #2 and/or reading the detailed user
guidelines that comes with the FRAGSTATS software.

1. Open FRAGSTATS

First, open FRAGSTATS from the start menu or by double clicking on the FRAGSTATS
icon on the desktop. Remember, if you have an ESRI ArcGIS (v10.0 or earlier)
installation, there may be a significant delay (up to 30 seconds in some cases) in
opening the user interface as FRAGSTATS tries to secure a valid ArcGIS license, so be
patient and don't forget to thank ESRI for their license management while you're
waiting. Note, if you have a later version of ArcGIS installed on your machine or you
don't have a valid ESRI Spatial Analyst license or you simply don't want to run
FRAGSTATS with ArcGrids, then be sure that your system's environmental "path"
variable does NOT contain a path to ArcGIS. See tutorial #1 for details.

2. Create a FRAGSTATS model

Next, create a New FRAGSTATS model, as before (see tutorial #2). Simply click on the
New button on the tool bar or select New from the File drop-down menu. This creates a
blank model for you to parameterize. Or, if you prefer, you can open the provided model
(fragmodelMw.fca) -- but really you shouldn't, since this is a tutorial after all, and the
best way of learning is by doing. Note, if you do open the provided model, you will likely
need to modify the path to the tutorial grid and the corresponding class descriptors file
(see tutorial #2 for instructions).

3. Import a grid

Next, import a grid to analyze, as before (see tutorial #2). Note, if you are using the
provided model (fragmodelMw.fca), you will probably have to change the path to the
layer already loaded, since you are likely to have a different path to the tutorial on your
machine. In this case, simply click on the Edit layer button in the Batch management

24 | P a g e

section of the user interface on the Input layers tab and navigate to the reg78b.tif
dataset on your machine. If you are starting from scratch, click on the Add layer button
in the Batch management section of the user interface on the Input layers tab to open
the import data dialog and add the provided reg78b.tif grid. Note, if you are working
with ESRI ArcGIS, import the ArcGrid; otherwise, import either the corresponding ascii
or binary grid(16 or 32 bit).

4. Specify additional parameters for the analysis

Next, you need to specify some additional parameters for the analysis. Click on the
Analysis parameters tab on the left pane of the user interface. Here, is where you
chose the neighbor rule for delineating patches (4 cell rule or 8 cell rule) and specify
whether you want to sample the landscape to analyze sub-landscapes and, if so, by
which method.

For this tutorial, keep the default 8 cell neighbor rule and select the Exhaustive
sampling Moving window option. In addition, check the boxes for class and
landscape metrics, and choose between the Round or Square local kernel. Next,
click on the [...] button associated with the chosen kernel and enter 500 (in meters) as
either the radius of a circular kernel or the side of a square kernel. Lastly, leave the
default maximum 0% of border/nodata to accept in the window. With this option set to
0%, any window containing any border (negative cell values) or nodata will be
disregarded and the focal cell value set to nodata in the output grid. Note, this prevents

25 | P a g e

partial windows from being analyzed. If you want to analyze every window, regardless of
the percentage comprised of border/nodata, then click on the [...] button and change
this threshold to 100%; but be aware of the implications for the computed metrics since
the total landscape area (i.e., window area) will vary among windows.

5. Modify the class descriptors table and import

Because the moving window analysis is quite compute intensive, it can take a very long
time to complete on a large landscape. In addition, because each metric selected will
produce a separate grid, it is prudent to be extremely selective in the choice of metrics
(see below) and carefully consider which landcover class or classes to focus on (for class
level metrics). For the purpose of this tutorial, we will focus solely on the Forest
landcover class.

To restrict the moving window analysis to the
Forest landcover class for the class level
metrics you need to modify the class
descriptors table. Open up the provided
descriptors.fcd file in a text editor and
change the Enabled argument to "false" for
all the classes except Forest, as shown here.
You can save this modified file to the same file or choose a different file name. If you
choose a different file name be sure to import the correct file in the next step.

Next, click on the Class descriptors Browse button in the Common tables section of
the user interface on the Input layers tab and navigate to the tutorial directory and select
the modified descriptors.fcd file (be sure to select the modified file you saved, or use
the one provided, descriptors.modified.fcd).

6. Select metrics

Next, you need to select some metrics to compute. Give that you selected Class and
Landscape metrics in step 5, you need to select one or more metrics at each of these
levels.

Click on the Class metrics button in the top right pane of the user interface and then
on the Area-Edge tab (if it is not already the active tab). Check the box for the Area-
Weighted Mean (AM) Radius of Gyration (also known as Correlation length). This is a
measure of the physical continuity of the landscape and is often used in studies on
habitat fragmentation.

26 | P a g e

Click on the Landscape metrics button in the top right pane of the user interface and
then on the Area-Edge tab (if it is not already the active tab). Check the box for the
Area-Weighted Mean (AM) Radius of Gyration.

Note, you have selected a single metric (Correlation length), but computed both at the
class level for the Forest class only and at the landscape level for the entire patch
mosaic. Select other metrics if you wish; each metric will produce an output grid.

7. Run the model

Lastly, you are ready to Run the mode, as before (see tutorial #2). The major difference
between this run and the runs from the previous tutorials is that the Run list in the
top-right pane of the user interface is going to be empty after the run is complete
because the moving window analysis produces grids as output instead of tables. The
other notable difference is that the run takes much longer. Instead of computing the
metrics for a single input grid, in this example, the metrics are computed for 6,561
separate windows (sub-landscapes), one for each cell in the landscape in which the
specified window (500-m radius circle in this case) does not extend beyond the
landscape boundary; i.e., the entire window contains positively-valued cells.

8. View the results

Lastly, once the run is complete, you can view the results. In this case, the results are
grids in the same data format as the input grid.

GeoTIFF/ArcGIS grids.--If you analyzed a GeoTIFF or ESRI ArcGrid, open up the
provided fragtutorial_4.mxd project in ArcMap. The project contains the reg78b grid

27 | P a g e

preloaded, as described in tutorial #1, along with the Area-weighted mean radius of
gyration at the landscape level (gyrate_am) and at the class level for the forest class
(gyrate_am_500). If you computed any other metrics, you can add them to the
project now. Specifically, you should now have a folder named reg78b_MW1 (first
moving window analysis on reg78b) in the Tutorial_4 directory and inside this folder
there should be grids for each of the metrics selected. Toggle the gyrate_am.tif and
gyrate_am_500.tif layers on an off with the landcover grid in the background.

The first thing you should notice is that both grids contain a nodata border that is equal
to the radius of the window used, which was 500 m in this case. FRAGSTATS does not
compute focal cell values for cells within the specified window radius of the edge of the
rectangular input grid, or within the specified window radius of the landscape boundary
(i.e., border/nodata), because too many of the metrics are sensitive to landscape extent.
If you want moving window results for the entire landscape, the only unbiased solution
is to expand the landscape to include an appropriately sized buffer so that the end result
is real values for all cells within the landscape of interest.

The second thing you should notice is that the window shape and size is evident in the
results. This is not always so obvious and depends largely on the metric. In this case, the
area-weighted mean radius of gyration is particularly sensitive to the exact pattern of
what gets included in the window. Try running the analysis again but with a variety of
other metrics to see how they vary.

The last thing you should notice is that the result differs, but only subtly, between the
landscape (left figure above) and class (right figure above) grids. This is because the
Forest class is dominant in this particular landscape, so the extensiveness of Forest (as
measured by this metric) dominates the pattern at both the class and landscape level.

28 | P a g e

Ascii/binary grids.--If you analyzed ascii or binary grids, it is a bit more difficult to
view the moving window results without importing them into your favorite GIS.
However, if you are an R user, you can use the following script (or open the provided
script, tutorial_4.R) to plot the grid in R. Note, there are several ways to plot the grids
in R. Here, we will use the Raster package, which you will need to download and install
if you don't already have it. Try the following script:

First, load the Raster library:

 library(raster)

Next, set the working directory to wherever you have installed the tutorial; e.g.:

setwd('c:/work/fragstats/tutorial/tutorial_4/ reg78b.asc_mw1')

Next, read in the ascii grid, as a matrix, into an object (m), but also specify the negative
background value (-999 by default) to treat as nodata so that the border that was created
from the moving window analysis is not read in as real data:

 m<-as.matrix(read.table('gyrate_am.asc',na.strings='-999'))

Next, convert the matrix object (m) into a Raster object (also assigned to m):

 m<-raster(m)

Finally, plot the image:

 plot(m)

If you want, plot the class level metric using the previous script, but substituting the grid
name: gyrate_am_500.asc.

29 | P a g e

30 | P a g e

Tutorial 5: Running the command line version from R

In this tutorial, you will run the command line version of FRAGSTATS from R:

R Development Core Team (2008). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, URL http://www.R-project.org.

The command line version can be run directly from the system command line as per the
instructions in the complete user guidelines. However, it can also be called from within
other programs such as R, as illustrated in this tutorial.

This tutorial assumes that you now have a basic working understanding of FRAGSTATS
from completing tutorials #1 and #2 and/or reading the detailed user guidelines that
comes with the FRAGSTATS software. In particular, this tutorial assumes that you know
how to build a FRAGSTATS model via the graphical user interface (see tutorial #2). In
addition, this tutorial assumes that you already are familiar with R and have it installed
on your machine and know how to work in R.

1. Create a FRAGSTATS model

Currently, the command line version of FRAGSTATS requires that a model first be
created via the graphical user interface version, as illustrated in tutorial #2. Eventually,
we would like to build a mechanism for parameterizing the model without having to
open the user interface, but for the time being you will have to be satisfied with using
the user interface to parameterize a model.

So, the first step is to open the user interface and parameterize the model. See tutorial
#2 for a detailed example. For this tutorial, we have provided a ready-to-use model
(fragmodelR.fca). The most important difference between this model and the one
created and saved in tutorial #2 is that this model has no grid layers added to the batch
manager and it does not have a basename for the output files specified and the
"automatically save results" box checked. Note, even if you have grid layers loaded in the
batch manager and/or have a basename for the output files specified and the
"automatically save results" box checked, you can override these model specifications
with the use of the command line switches, as illustrated below.

2. Open R and run the script provided

Next, open R and work through the script below (or open the provided script, tutorial-
5.R).

First, set the working directory to wherever you have installed the tutorial; e.g.:

31 | P a g e

 setwd('c:/work/fragstats/tutorial/tutorial_5')

Next, create a FRAGSTATS batch file to list the input grids (or single grid in this case) to
be analyzed along with their grid attributes. First, create a temporary object containing
the contents of the batch file, and then write it to disk:

 temp<-paste('c:\\work\\fragstats\\tutorial\\tutorial_5\\
 reg78b.tif','x','999','x','x',1,'x','IDF_GeoTIFF',sep=',')

 write.table(temp,file='geotiffbatch.fbt',quote=FALSE,row.names=FALSE,
 col.names=FALSE)

There are a few details about the above script worth noting:

• First, the first argument of the FRAGSTATS batch file is the full path and name of
the input grid. To get R to output the path with the conventional backslashes, you
need to put double backslashes in the script.

• Second, the second, fourth, fifth and seventh arguments of the batch file pertain
to the cell size, number of rows, number of columns and nodata value which do
not need to be specified for a GeoTIFF and thus the arguments are set to 'x'. If
you working with ascii or binary grids you will need to include values for all of the
arguments (see below).

• Third, note the use of the sep=',' argument, which designates the delimiter to be
used between items, which needs to be a comma in a FRAGSTATS batch file.

• Lastly, note the use of the quote=FALSE, row.names=FALSE and
col.names=FALSE arguments in the write.table () function, which are
necessary to ensure the omission of quotes and row and column headers in the
output file.

Next, use the system() function to execute the FRAGSTATS command line executable
(frg.exe) from the system command line:

 system('frg -m fragmodelR.fca -b geotiffbatch.fbt -o
 c:\\work\\fragstats\\tutorial\\tutorial_5\\fragout')

There are a few details about the script above worth noting:

• First, the system () function is simply a generic function for accessing the
operating system command line.

• Second, the -m switch is required and must be followed by a valid FRAGSTATS
model. In this case, we have specified the provided model (fragmodelR.fca) but it
can be any valid model that you have created using the user interface.

• Third, the -b switch is optional and is used to supply a properly formatted
FRAGSTATS batch file. In this case, we created the batch file in R. However, we

32 | P a g e

could have easily created the batch file outside of R using any text editor and
simply specified that file here. Note, because we specified a batch file here using
the -b switch, it was not necessary to load any grid layers into the batch manager
in the model via the user interface. Thus, the fragmodelR.fca provided does not
have any grids added to the batch manager. However, if the model did contain
layers already added to the batch manager, they would be ignored; the -b switch
overrides any layers added to the model specified.

• Fourth, the -o switch is optional and is used to supply a basename and path for
the output files. Note, the basename must include a full path to an existing folder
and the basename to be given to the output files. As described above, we need to
use double backslashes to produce a path with the conventional single backslash.
Note, if the -o switch is not specified, then the model must have the
"automatically save results" box checked and a full path to an existing folder and
the basename to be given to the output files specified.

Lastly, read in the FRAGSTATS output generated from the execution above. In this case,
the model included patch, class, and landscape metrics and so you have three output
files:

frag.patch<-read.csv('fragout.patch',header=TRUE,strip.white=TRUE,
na.strings='N/A')

frag.class<-read.csv('fragout.class',header=TRUE,strip.white=TRUE,
na.strings='N/A')

frag.land<-read.csv('fragout.land',header=TRUE,strip.white=TRUE,
na.strings='N/A')

There are a few details about the above script worth noting:

• First, the filename of the file to read, e.g., 'fragout.patch' must match the
basename supplied in either the system call using the -o argument (see above; in
this case the basename specified was 'fragout') or in the filename specified in the
model (fragmodelR.fca) if the 'automatically save results' box was checked. Note,
the extensions '.patch', '.class', and '.land' are added automatically by the
software.

• Second, note that we used the header=TRUE argument because the
FRAGSTATS output files contain a header line.

• Lastly, not that we also used the strip.white=TRUE argument to delete any
leading and trailing blank spaces in the FRAGSTATS output files (mainly for
cosmetic reasons).

33 | P a g e

Now that you have R objects containing the patch, class and landscape results, you can
work with the output in R as you please. Of course the real advantage of R is running
FRAGSTATS on multiple landscapes. This can be done as a single batch file or each
landscape can be run separately and the outputs appended together. In either case, the
resulting tables in R and can sorted, aggregated, plotted, merged with other data and
incorporated into statistical models, etc.

As an example, you can combine the landscape and class metrics into a single dataframe
in wide format using the frag.combine() function in the Rfrag library available from the
Fragstats website. First, you will have to install the Rfrag library. In RStudio you can
install packages from the Tools drop-down menu. In this case, change the "Install from"
to "Package Archive File", navigate to the folder where you stored the RFrag.zip file, and
then click on the "Install" button. Once you have successfully installed the Rfrag package
be sure to load it into memory as follows:

 library(Rfrag)

Now you are ready to run the frag.combine() function as follows:

 frag.combine('c:/work/fragstats/tutorial/tutorial_5/',inland='fragout.land',
 inclass='fragout.class')

This functions takes corresponding FRAGSTATS landscape (.land) and class (.class)
output files and combines them into a single wide format file with a single row for each
unique input landscape (LID). The class metrics are assigned names by combining the
class name (TYPE) with each class metric and assigned to a column. Thus, a single
landscape containing 6 classes and 4 class metrics, as in this example, will produce a
data frame containing 24 columns (variables) for the factorial combination of classes
and class metrics, and these will be added to the columns containing the landscape
metrics, which in this example consists of 6 variables, for a total of 30 columns
(variables). Note, if the input files contain multiple landscapes (e.g., resulting from
running a batch file), the output file will contain a single row for each input landscape.

Ascii/binary grids.--If you are working with ascii or binary grids, you will need to
modify the script above slightly. In a typical application you are probably going to be
generating your own grids in R, and thus you will not need to do this next step.
However, for this tutorial, read in the provided ascii grid (reg78b.asc), as a matrix, into
an object (m):

 m<-as.matrix(read.table('reg78b.asc'))

Next, write out the ascii grid to disk. Note, you may not need to do this step in a real
application; it all depends on how you are generating the grids to be analyzed in

34 | P a g e

FRAGSTATS. But for this tutorial, write out the grid you just read in back to disk, noting
that you don't want to write out the row and column names of the matrix:

 write.table(m,file='reg78b.asc',row.names=FALSE,col.names=FALSE)

Next, create a FRAGSTATS batch file to list the input grids (or single grid in this case) to
be analyzed along with their grid attributes. First, create a temporary object containing
the contents of the batch file, and then write it to disk:

 temp<-paste('c:\\work\\fragstats\\tutorial\\tutorial_5\\ reg78b.asc',
 '50','999',dim(m)[1],dim(m)[2],'9999','IDF_ASCII',sep=',')

 write.table(temp,file='asciibatch.fbt',quote=FALSE,row.names=FALSE,
 col.names=FALSE)

The fourth and fifth arguments of the batch file pertain to the number of rows and
columns, and we extracted these attributes from the matrix object using the dim()
function, which returns a vector with the matrix dimensions. We used dim(m)[1] to
extract the first element of the vector, which is equal to the number of rows, and
dim(m)[2] to extract the second element of the vector, which is equal to the number of
columns.

Next, use the system() function to execute the FRAGSTATS command line executable
(frg.exe) from the system command line:

 system('frg -m fragmodelR.fca -b asciibatch.fbt
 -o c:\\work\\fragstats\\tutorial\\tutorial_5\\fragout'

Lastly, read in the FRAGSTATS output generated from the execution above:

frag.patch<-read.csv('fragout.patch',header=TRUE,strip.white=TRUE,
na.strings='N/A')

frag.class<-read.csv('fragout.class',header=TRUE,strip.white=TRUE,
na.strings='N/A')

frag.land<-read.csv('fragout.land',header=TRUE,strip.white=TRUE,
na.strings='N/A')

35 | P a g e

Tutorial 6. Using sampling strategies to analyze sub-
landscapes

In this tutorial, you will use various sampling strategies to analyze sub-landscapes,
including: 1) exhaustive sampling based on either user-provided tiles, or a systematic
tiling scheme, and 2) partial sampling based on user-specified windows around either
user-provided or random sample points.

Note, this tutorial assumes that you now have a basic working understanding of
FRAGSTATS from completing tutorials #1 and #2 and/or reading the detailed user
guidelines that comes with the FRAGSTATS software.

1. Open FRAGSTATS

First, open FRAGSTATS from the start menu or by double clicking on the FRAGSTATS
icon on the desktop. Remember, if you have an ESRI ArcGIS (v10.0 or earlier)
installation, there may be a significant delay (up to 30 seconds in some cases) in
opening the user interface as FRAGSTATS tries to secure a valid ArcGIS license, so be
patient and don't forget to thank ESRI for their license management while you're
waiting. Note, if you have a later version of ArcGIS installed on your machine or you
don't have a valid ESRI Spatial Analyst license or you simply don't want to run
FRAGSTATS with ArcGrids, then be sure that your system's environmental "path"
variable does NOT contain a path to ArcGIS. See tutorial #1 for details.

2. Create a FRAGSTATS model

Next, create a New FRAGSTATS model, as before (see tutorial #2). Simply click on the
New button on the tool bar or select New from the File drop-down menu. This creates a
blank model for you to parameterize.

3. Import a grid

Next, import a grid to analyze, as before (see tutorial #2). Specifically, click on the Add
layer button in the Batch management section of the user interface on the Input layers
tab to open the import data dialog and add the provided lugrid grid. Note, if you are
working with GeoTIFFs (or ArcGrid), simply import the GeoTIFF (or ArcGrid);
otherwise, import the corresponding ascii grid with the following grid attributes:

Row count: 1035
Column count: 1104
Background value: 999
Cell size: 50
Nodata value: 9999

36 | P a g e

Let's recall from tutorial #1 what the input grid looks like:

If you are working with ESRI ArcGIS, open up the provided fragtutorial_6.mxd
project in ArcMap. The project contains several data layers, as listed in the table of
contents, including a landcover grid (lugrid.tif) for an arbitrary extent in western
Massachusetts, and a tile grid (tiles.tif) and points grid (points.tif) as described
below.

If you are not working with ESRI ArcGIS, you can open up your GIS software and load
the GeoTIFFs, or you can use R to view the ascii grids provided using the procedures
outlined in tutorial #1, but modifying the script accordingly for the ascii grids provided
(lugrid.asc, tiles.asc, and points.asc).

37 | P a g e

4. Optionally, input common tables

Next, you have the option of inputting a class descriptors table and other common
tables, depending on the intended choice of metrics, as before (see tutorial #2). Recall,
the class descriptors table allows you to specify a character description (i.e., patch type)
for each numeric class value, specify whether to compute statistics for each class, and
whether to designate each class as background. The class descriptors table is optional. If
you do not provide this table, then the numeric class values are used in the output, all
classes are enabled and none are treated as background except any class with the
assigned background value (999 in this case).

To use the provided class descriptors file, click on the Class descriptors Browse
button in the Common tables section of the user interface on the Input layers tab and
navigate to the tutorial directory and select the descriptors.fcd file.

Similarly, if you intend to select any of the Core area metrics, Contrast metrics or
Similarity index (on the Aggregation tab) at any level (patch, class or landscape), then
you also need to create and input additional ancillary tables in order to parameterize
these metrics. Recall, if you fail to input these tables or try to input improperly
formatted tables, you will get an error message and the analysis will fail. To use the
provided edgedepth file, click on the Edge depth Browse button in the Common
tables section of the user interface on the Input layers tab and navigate to the tutorial
directory and select the edgedepth.fsq file. Repeat the process above for the provided
contrast.fsq and similarity.fsq tables, as appropriate; these tables provide the edge
contrast weights and similarity coefficients for each pairwise combination of classes
(patch types), respectively.

5. Select metrics

Next, you need to select some metrics to compute, as before (see tutorial #2). Normally,
as in the previous tutorials, we would specify the additional parameters for the analysis
prior to selecting metrics, but the order of operations does not matter and for the
purpose of this tutorial it is more convenient to select metrics first and then work
through the various sampling methods. And for our purposes, let's focus the analysis on
class- and Landscape-level heterogeneity.

To begin, click on the Class metrics button and then on each tabbed set of metrics.
You can chose a subset of metrics or simply "Select all" -- your choice. Note, on the
Area-Edge tab, if you select Total Edge or Edge Density, then you need to consider
how you want to treat any background or boundary edge in the edge calculations. The
default is to not consider any of it as true edge. However, you can chose to treat all of it
as edge or any specified proportion as edge. To change the default, click on the [...]
button and enter your choice. Note, since the input landscape contains a border and

38 | P a g e

does not contain any designated background, the issue is mute since we know the true
status of every edge segment along the landscape boundary and there are no
background edges to worry about. Similarly, on the Aggregation tab, if you select
either the Proximity index, Similarity index, or Connectance index then you also need
to specify additional information. These metrics are "functional" metrics and thus
require additional parameterization. All three of these metrics require a search radius;
the Similarity index also requires a similarity weights table (see above). To specify a
search radius, click on the [...] button and enter the desired search radius in meters;
e.g., 500. Note, a single search radius is specified for the Proximity index and Similarity
index, and a separate threshold distance is specified for the Connectance index.

Lastly, click on the Landscape metrics button and then on each tabbed set of metrics.
Again, you can chose a subset of metrics or simply "Select all" -- your choice. Note, on
the Diversity tab, if you select Relative Patch Richness, then you also need to specify
the maximum number of classes (or patch types). Simply click on the [...] button and
enter the value; 6 in this case.

6. Specify additional parameters for the analysis

Next, you need to specify some additional parameters for the analysis. Click on the
Analysis parameters tab on the left pane of the user interface. Here, is where you
chose the neighbor rule for delineating patches (4 cell rule or 8 cell rule) and specify
whether you want to sample the landscape to analyze sub-landscapes and, if so, by
which method.

For this tutorial, keep the default 8 cell neighbor rule. With regards to sampling method,
let's go through each method in turn to learn about what it is doing.

6.1 User-provided tiles

In this method, the landscape is subdivided into a set of mutually-exclusive and typically
all-inclusive user-defined tiles (sub-landscapes). The tiles should not extend beyond the
landscape boundary; in other words, the tiles should comprise the landscape of interest
(i.e., the extent of positively valued cells). Moreover, the tile grid must have the same
input data format and identical cell size and geographical alignment as the input
landscape.

In our example, as shown below (left figure), the input landscape (lugrid) is subdivided
into 40 tiles (sub-landscapes) representing townships. Each tile (town) has an unique
integer-valued id ranging in value from 150 to 420 (note, the id's need not be
consecutive). Each tile will be analyzed separately as a sub-landscape. However,
FRAGSTATS will include a 1 cell wide border around each tile in which the cells are
assigned negative their class value, designating that they are outside the landscape of

39 | P a g e

interest, but providing information on patch type adjacency for cells along the landscape
boundary that will affect the edge-related metrics. Note, the tiles are mutually-exclusive
and all-inclusive, and do not extent outside the landscape of interest (i.e., they do not
extend into the nodata portion of the grid).

Note, it is not required that the tiles be all-inclusive, as in our example. For example, we
could have a tiling scheme that allocates a small to large portion of the landscape to
either background or nodata, as shown in the right figure above. In this particular case,
it would not matter whether the unallocated portion of the landscape is designated as
background or nodata, since both will be treated as negative background (external to the
landscape of interest) by FRAGSTATS.

Select the User-
provided tiles
sampling option in the
Analysis
parameters tab on
the left pane of the
user interface, as
shown here.

In addition, check the boxes for Class and Landscape metrics, as shown. Note, you
must have at least one of the these boxes checked or you will get an error message later
when trying to run the model. However, only check the level corresponding to the
metrics you want to compute.

40 | P a g e

Next, import the tile grid. Simply click on the [...] button and repeat the process for
inputting a grid, making sure that the data type is the same as before.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the
Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).
The major difference between this run and the runs from the previous tutorials is that
the Run list in the top-right pane of the user interface is going to contain a list of
results pertaining to the tiles or sub-landscapes. In this case, the run list should contain
40 rows, one for each tile. Note, the LID field lists the tile number and this corresponds
to the unique tile id in the tile grid.

6.2 Uniform tiles

In this method, the landscape is subdivided into a set of mutually-exclusive and all-
inclusive uniform square tiles (sub-landscapes) of a user-specified size. Note, in the
current version of FRAGSTATS the uniform tiles are limited to squares, but we will
eventually incorporate an option for hexagons.

With this option, FRAGSTATS will create a uniform grid of tiles of the size you specify
that fills out the rectangular input grid starting from the top left corner. This means that
if the landscape of interest is not rectangular, as in our example, that some of the
uniform tiles will overlap the nodata portion of the input grid. Any tile that falls entirely
within the nodata region of the input grid will be discarded by FRAGSTATS. However,
any tile that partially overlaps the landscape of interest (i.e., positively valued cells in the

41 | P a g e

input grid) will be included or excluded depending on the user-specified preference for
the maximum percentage of border/nodata to allow, as described below. In addition,
FRAGSTATS automatically includes a 1 cell wide border around each tile in which the
cells are assigned negative their class value, designating that they are outside the
landscape of interest, but providing information on patch type adjacency for cells along
the landscape boundary that will affect the edge-related metrics.

Let's see how this works.
To begin, select the
Uniform tiles sampling
option in the Analysis
parameters tab on the
left pane of the user
interface, as shown here.

In addition, check the
boxes for Class and
Landscape metrics, as
shown. Note, you must have at least one of the these boxes checked or you will get an
error message later when trying to run the model. However, only check the level
corresponding to the metrics you want to compute.

Next, specify the size of the square tile to use in meters. Simply click on the [...] button
and enter the side length in meters. Let's enter 5000 m (5 km) for this example.

Next, you have the option of accepting tiles with a maximum user-specified percentage
of border/nodata. The default is 0%, which means that any tile that contains even 1 cell
of either border (negative cells) or nodata will be discarded. Let's keep the default for
now and see what happens.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the
Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).
The major difference between this run and the runs from the previous tutorials is that
the Run list in the top-right pane of the user interface is going to contain a list of
results pertaining to the uniform tiles or sub-landscapes. In this case (but not shown
here), the run list should contain 66 rows, one for each valid tile. The SUMMARY in the
Activity log should indicate that there were a total of 110 tiles, but that only 66 were
deemed valid based on the threshold of 0% border/nodata. Note, the LID field lists the
tile number and this corresponds to the unique tile id in the tile grid that is output by
FRAGSTATS.

42 | P a g e

Let's view the uniform tile grid and evaluate its correspondence with the FRAGSTATS
results. Here, I will use ESRI ArcMap, but if you are not working with ESRI ArcGIS, and
you analyzed the provided ascii grid (lugrid.asc), you can use R to view the ascii tile grid
that would have been created using the procedures outlined in tutorial #1, but modifying
the script accordingly for the created ascii grid (tiles00001).

Open up the provided fragtutorial_6.mxd project in ArcMap, if it is not already open
from earlier. Add the created uniform tile grid (tiles00001.tif) to the project. Note,
each time FRAGSTATS creates a tile grid in the same directory, it will increment the tile
grid name by 1. Since this is presumably your first run in this directory, the created tile
grid should be numbered 00001.

43 | P a g e

For our purposes, I changed the symbology to give a different color to each unique tile
and made them 60% transparent. There are two important things to note about the tile
grid:

1. Some of the tiles fall entirely within the nodata portion of the input landscape
(lugrid), while others partially or completely overlap the landscape of interest.

2. There is a strip of nodata at the bottom and on the right size of the tile grid
because the grid dimensions were not perfectly divisible by the user-specified tile
size (5,000 m in this case) and the tiling begins in the top left.

Importantly, because we specified a maximum threshold of 0% border/nodata, any tile
containing even a single cell of nodata was discarded. In fact, the result summary
indicates that 44 tiles were discarded out of the 110 total tiles, leaving 66 valid tiles. In

44 | P a g e

this figure, only the valid tiles are shown on top of the input grid.

Now, let's change the maximum percentage of border/nodata from 0% to say 100% and
see what happens. Note, a 100% doesn't actually mean that a tile that is composed
entirely of nodata will be deemed valid, since this would be nonsensical. A valid tile still
has to have at least one cell in the landscape of interest, regardless. However, this means
that any tile intersecting at least 1 cell of the landscape will be deemed valid.

Change the threshold to 100% and run the analysis and review the results. The run list
(not shown here) should contain 103 rows, one for each valid tile. The SUMMARY in the
Activity log should indicate that there were a total of 110 tiles, and that 103 were deemed
valid. Here's the set of tiles that were analyzed in this scenario. Again, the valid tiles are
shown on top of the input grid.

45 | P a g e

6.3 User-provided points

In this method, the user provides a set of points (in a formatted table) or focal cells (in a
grid) to serve as the center of windows (sub-landscapes) of a user-specified size and
shape. Any point that falls within the nodata region of the input grid will be summarily
discarded by FRAGSTATS. Any point that falls within the landscape of interest (i.e.,
positively valued cells in the input grid) will be included or excluded depending on the
user-specified preference for the maximum percentage of border/nodata in the window
to allow, as described below. In addition, FRAGSTATS automatically includes a 1 cell
wide border around each window in which the cells are assigned negative their class
value, designating that they are outside the landscape of interest, but providing
information on patch type adjacency for cells along the landscape boundary that will
affect the edge-related metrics.

Let's see how this works. To
begin, select the User-
provided points sampling
option in the Analysis
parameters tab on the left
pane of the user interface, as
shown here.

In addition, check the boxes for
Class and Landscape metrics,
as shown. Note, you must have
at least one of the these boxes
checked or you will get an error
message later when trying to
run the model. However, only
check the level corresponding to the metrics you want to compute.

Next, specify the shape (round or square) and size (in meters) of the window to use.
Simply click on the [...] button and enter the radius (for round) or side length (for
square) in meters. Let's choose a round window and enter 5000 m (5 km) for this
example.

Next, you have the option of accepting tiles with a maximum user-specified percentage
of border/nodata. The default is 0%, which means that any window that contains even 1
cell of either border (negative cells) or nodata will be discarded. Let's keep the default
for now and see what happens.

Next, you have the option of reading in a points grid or points table to identify the focal
cells. The points grid must have the same input data format and identical cell size and

46 | P a g e

geographical alignment as the input landscape. The grid should contain a unique non-
zero integer value for each focal cell (point) of interest; all others should be set to
nodata. The points table must have the following format.

FPT_TABLE
[first point id#: first point row#: first point col#]
[second point id#: second point row#: second point col#]
etc.

Note, each bracketed item contains point coordinates of the following form: [id : row :
column] or [id:row:column], where point id values must be unique integer values
(duplicates will be ignored), row and column values must be integer values within the
ranges specific to the target dataset, and represent row and column numbers not
geographic coordinates (out-of-range and duplicate coordinates will be ignored). For
example, the first few lines of the points table provided for this example looks like this:

FPT_TABLE
[1:968:1002]
[2:968:935]
[3:965:63]
etc.

Choose either the points grid or points table to load by clicking on the corresponding
radio button. To import the points grid (points), simply click on the [...] button and
repeat the process for inputting a grid, making sure that the data type is the same as
before. To import the points table, simply click on the [...] button, navigate to the
tutorial folder, and select the points.fpt file. In both cases, there are 100 points or focal
cells identified.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the
Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).
The major difference between this run and the runs from the previous tutorials is that
the Run list in the top-right pane of the user interface is going to contain a list of
results pertaining to the uniform tiles or sub-landscapes. In this case (but not shown
here), the run list should contain 58 rows, one for each valid window. The SUMMARY in
the Activity log should indicate that there were a total of 74 windows considered (out of
100 points), but that only 58 of these were deemed valid based on the threshold of 0%
border/nodata and 16 were skipped because their windows included one or more
border/nodata cells. The remaining 26 points were never even considered because their
windows extended beyond the edge of the rectangular grid. Note, the LID field lists the
point number and this corresponds to the unique point id in the points grid/table.

47 | P a g e

Let's view the points grid and evaluate its correspondence with the FRAGSTATS results.
Here, I will use ESRI ArcMap, but if you are not working with ESRI ArcGIS, and you
analyzed the provided ascii grid (lugrid.asc), you can use R to view the ascii points grid
that would have been created using the procedures outlined in tutorial #1, but modifying
the script accordingly for the name of the ascii grid (points).

Open up the provided fragtutorial_6.mxd project in ArcMap, if it is not already open
from earlier. Note, the ArcMap project contains the points grid (points.tif), as well as a
points shapefile (points shapefile) included for the sole purpose of facilitating the
display of the points. As shown here, the 100 points (red dots) are all located inside the
landscape of interest (i.e., none fall in the nodata region), but vary in their distance to
the landscape boundary (i.e., the edge of the landscape of interest) and the edge of the
rectangular grid.

48 | P a g e

In fact, 26 points are within 5 km of the edge of the rectangular input grid and were
summarily discarded by FRAGSTATS. These points are indicated in the figure below by
having circular buffers that extend beyond the edge of the grid. An additional 16 points
are within 5 km of the landscape boundary (i.e., the edge of the positively valued cells
and the landscape of interest) and were discarded because they did not meet the 0%
border/nodata threshold. This leaves 58 valid windows for the analysis.

Now, let's change the maximum percentage of border/nodata from 0% to say 100% and
see what happens. As noted above, a 100% doesn't actually mean that a window that is
composed entirely of nodata will be deemed valid. A valid window still has to have at
least one cell in the landscape of interest, regardless. However, this means that any
window intersecting at least 1 cell of the landscape will be deemed valid.

Change the threshold to 100% and run the analysis and review the results. The run list
(not shown here) should contain 74 rows, one for each valid window. The SUMMARY in
the Activity log should indicate that there were a total of 74 windows, and that 74 were
deemed valid. This is because the only windows that were summarily discarded were the
26 that extend beyond the edge of the rectangular input grid. All the other windows fall
within the rectangular grid and contain at least 1 cell that is not border/nodata. The
image below shows the 26 points that were discarded.

49 | P a g e

6.4 Random points without overlap

In this method, FRAGSTATS generates random point locations to serve as the center of
windows (sub-landscapes) of a user-specified size and shape such that the windows do
not overlap. The random points are always greater than or equal to the radius of the
window from the edge of the rectangular input grid, and thus none are summarily
discarded as can happen with user-provided points. However, within this constraint, the
random distance from the edge of the landscape of interest (i.e., positively valued cells
in the input grid) depends on the user-specified preference for the maximum percentage
of border/nodata in the window to allow, as described below. In addition, FRAGSTATS
automatically includes a 1 cell wide border around each window in which the cells are
assigned negative their class value, designating that they are outside the landscape of

50 | P a g e

interest, but providing information on patch type adjacency for cells along the landscape
boundary that will affect the edge-related metrics.

Let's see how this works. To
begin, select the Random
points without overlap
sampling option in the
Analysis parameters tab on
the left pane of the user
interface, as shown here.

In addition, check the boxes
for Class and Landscape
metrics, as shown. Note, you
must have at least one of the
these boxes checked or you will
get an error message later when trying to run the model. However, only check the level
corresponding to the metrics you want to compute.

Next, specify the shape (round or square) and size (in meters) of the window to use.
Simply click on the [...] button and enter the radius (for round) or side length (for
square) in meters. Let's choose a round window and enter 5000 m (5 km) for this
example.

Next, specify the number of random samples (or point locations) to use; the default is
100. Simply click on the [...] button and enter the sample size. Let's keep the default for
now and see what happens.

Next, you have the option of accepting tiles with a maximum user-specified percentage
of border/nodata. The default is 0%, which means that FRAGSTATS will not generate a
random window that contains even 1 cell of either border (negative cells) or nodata.
Let's keep the default for now and see what happens.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the
Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).
The major difference between this run and the runs from the previous tutorials is that
the Run list in the top-right pane of the user interface is going to contain a list of
results pertaining to the random windows or sub-landscapes. In this case (but not
shown here), the run list should contain multiple rows, one for each randomly generated
window. The SUMMARY in the Activity log should indicate that there were a total of
somewhere around 14 random windows generated (out of a maximum desired 100).

51 | P a g e

FRAGSTATS attempts to reach the user-specified sample size, but if it fails to create a
valid window after 5,000 attempts it stops. The issue here is that windows cannot
overlap with this sampling option and a 5 km window is pretty big for this landscape,
especially considering that the windows cannot include even a single cell of
border/nodata. Around 14 random windows are all that can fit given these constraints.
Note, the LID field lists the point number and this corresponds to the unique point id in
the generated points grid.

Let's view the FRAGSTATS generated points grid and evaluate its correspondence with
the FRAGSTATS results. Here, I will use ESRI ArcMap, but if you are not working with
ESRI ArcGIS you can use your GIS and the appropriate comparable methods to view the
generated points grid, or if you analyzed the provided ascii grid (lugrid.asc) you can use
R to view the ascii points grid that would have been created using the procedures
outlined in tutorial #1, but modifying the script accordingly for the name of the
generated ascii grid (points00001.asc).

Working with ArcMap: Open up the provided fragtutorial_6.mxd project in
ArcMap, if it is not already open from earlier. Note, the ArcMap project contains the
points grid (points.tiff), as well as a points shape file (points shape) included for the
sole purpose of facilitating the display of the points, but these are the user-provided
points that we worked with earlier. You need to add the FRAGSTATS generated random
points grid that was just created (e.g., points00001.tif). Note, the random points are
extremely difficult to see in their grid form because the focal cells representing the
points can't be displayed larger than they are, so you have to zoom in to see them. You
will want to covert the grid to a shapefile in order to be able to enlarge the points for
display and then you can buffer the points with a 5,000 m circular buffer to see what
happened. Here's how you can do that:

1. Open the Arc Toolbox and select "Conversion Tool", then "From Raster", and
then "Raster to Point". Use the dropdown button to select points00001.tif as
the Input Raster, choose "Value" as the Field, and enter a path and file name
(e.g., points00001) for the Output File. Click on OK at the bottom of the
window and keep your fingers crossed that it doesn't crash.

2. Add the newly created shapefile (e.g., points00001) to the table of contents.
Note, this shapefile has a point for every cell in the original grid and so we need
to select just the actual points of interest.

3. From the Arc Toolbox select "Analysis Tools", then "Extract", and then "Select".
Use the dropdown button to select the newly created shapefile (e.g.,
points00001) as the Input Features, enter a path and file name (e.g.,
points00001x) and enter the following Expression: "GRID_CODE" >0. Click

52 | P a g e

on OK at the bottom of the window and keep your fingers crossed that it doesn't
crash.

4. Add the newly created shapefile (e.g., points00001x) to the table of contents.
Note, this shapefile has a point for each of the grid cells with a value >0, which in
this case is going to be around 14 or so depending on the random placement of
non-overlapping circles. You can modify the symbology of the points to expand
the size of the points so that you can see them better.

5. Next, if you want to add the x-y coordinates of the points to the attribute table of
the shapefile so that if you choose to export the data you have the geographic
coordinates of the points, from the Arc Toolbox select "Data Management Tools",
then select "Features", and then select "Add XY Coordinates". Select the newly
created shapefile (e.g., points00001x) for the Input Features and click on OK at
the bottom of the window.

6. Lastly, you can add a buffer to the points to see what the specified window
around each point looks like, in this case a 5 km radius window. From the Arc
Toolbox select "Analysis Tools, then select "Proximity", and then select "Buffer".
Select the newly created shapefile (e.g., points00001x) for the Input Features,
enter a path and file name (e.g., pointsbuff) for the "Output Feature Class",
enter 5000 for the "Linear unit" and make sure the units are set to "meters", and
click on OK at the bottom of the window. With any luck the buffers should appear
after a while and you can change the symbology to suit.

As shown below, in my particular run, 14 random points (windows) were generated out
of the maximum desired 100 points. Note, the 5 km windows are all contained entirely
within the landscape of interest (i.e., none of them include even a single cell of
border/nodata because we specified a 0% threshold) and are mutually exclusive (i.e., do
not overlap because we specified random points 'without' overlap).

53 | P a g e

Now, let's change the maximum percentage of border/nodata from 0% to say 100% and
see what happens. As noted above, a 100% doesn't actually mean that a window that is
composed entirely of nodata will be deemed valid. A valid window still has to have at
least one cell in the landscape of interest, regardless. However, this means that any
window intersecting at least 1 cell of the landscape will be deemed valid.

Change the threshold 100% and run the analysis and review the results. The run list
(not shown here) should contain multiple rows, one for each randomly generated
window. The SUMMARY in the Activity log should indicate that there were a total of
somewhere around 17 random windows generated (out of a maximum desired 100). The
image below shows the result for my particular run, in which FRAGSTATS generated 17
random windows without overlap. The main difference between this run and the
previous run is that the random windows are allowed to be closer to the edge of the

54 | P a g e

landscape of interest because they can contain any percentage of border/nodata, so long
as the focal cells still fall within the landscape of interest and the windows do not extend
beyond the edge of the rectangular input grid.

6.5 Random points with overlap

In this method, FRAGSTATS generates random point locations to serve as the center of
windows (sub-landscapes) of a user-specified size and shape, but allows the windows to
overlap. The random points are always greater than or equal to the radius of the window
from the edge of the rectangular input grid, and thus none are summarily discarded as
can happen with user-provided points. However, within this constraint, the random
distance from the edge of the landscape of interest (i.e., positively valued cells in the
input grid) depends on the user-specified preference for the maximum percentage of

55 | P a g e

border/nodata in the window to allow, as described below. In addition, FRAGSTATS
automatically includes a 1 cell wide border around each window in which the cells are
assigned negative their class value, designating that they are outside the landscape of
interest, but providing information on patch type adjacency for cells along the landscape
boundary that will affect the edge-related metrics.

Let's see how this works. To begin, select the Random points with overlap sampling
option in the Analysis parameters tab on the left pane of the user interface, as shown
here.

In addition, check the boxes
for Class and Landscape
metrics, as shown. Note, you
must have at least one of the
these boxes checked or you
will get an error message
later when trying to run the
model. However, only check
the level corresponding to
the metrics you want to
compute.

Next, specify the shape
(round or square) and size
(in meters) of the window to use. Simply click on the [...] button and enter the radius
(for round) or side length (for square) in meters. Let's choose a round window and
enter 5000 m (5 km) for this example.

Next, specify the number of random samples (or point locations) to use; the default is
100. Simply click on the [...] button and enter the sample size. Let's keep the default for
now and see what happens.

Next, you have the option of accepting tiles with a maximum user-specified percentage
of border/nodata. The default is 0%, which means that FRAGSTATS will not generate a
random window that contains even 1 cell of either border (negative cells) or nodata.
Let's keep the default for now and see what happens.

Next, you are ready to Run the model, as before (see tutorial #2). Simply click on the
Run button, verify that the run parameters are correct and click on Proceed.

Lastly, once the run is complete, you can view the results, as before (see tutorial #2).
The major difference between this run and the runs from the previous tutorials is that
the Run list in the top-right pane of the user interface is going to contain a list of

56 | P a g e

results pertaining to the random windows or sub-landscapes. In this case (but not
shown here), the run list should contain multiple rows, one for each randomly generated
window. The SUMMARY in the Activity log should indicate that there were a total of 100
windows generated. Note, in contrast to the random points without overlap sampling
option, with the random points with overlap sampling option, FRAGSTATS will always
generate the user-specified number of windows. Note, the LID field lists the point
number and this corresponds to the unique point id in the generated points grid.

Let's view the FRAGSTATS generated points grid and evaluate its correspondence with
the FRAGSTATS results. Here, I will use ESRI ArcMap, but if you are not working with
ESRI ArcGIS you can use your GIS and the appropriate comparable methods to view the
generated points grid, or you can use R to view the ascii points grid that would have
been created using the procedures outlined in tutorial #1, but modifying the script
accordingly for the name of the generated ascii grid (e.g., points00002.asc).

Working with ArcMap: Open up the provided fragtutorial_6.mxd project in
ArcMap, if it is not already open from earlier. Note, the ArcMap project contains the
points grid (points.tif), as well as a points shape file (points shape) included for the
sole purpose of facilitating the display of the points, but these are the user-provided
points that we worked with earlier. You need to add the FRAGSTATS generated random
points grid that was just created (e.g., points00002.tif). Note, the random points are
extremely difficult to see in their grid form because the focal cells representing the
points can't be displayed larger than they are, so you have to zoom in to see them. You
will want to covert the grid to a shapefile in order to be able to enlarge the points for
display and then you can buffer the points with a 5,000 m circular buffer to see what
happened. You can follow the procedures outlined above demonstrated for the random
points without overlap.

As shown below for my particular run, FRAGSTATS generated 100 random points
(windows), but allowing them to overlap. Note, the 5 km windows are all contained
entirely within the landscape of interest (i.e., none of them include even a single cell of
border/nodata because we specified a 0% threshold) and are overlapping.

Now, let's change the maximum percentage of border/nodata from 0% to say 100% and
see what happens. As noted above, a 100% doesn't actually mean that a window that is
composed entirely of nodata will be deemed valid. A valid window still has to have at
least one cell in the landscape of interest, regardless. However, this means that any
window intersecting at least 1 cell of the landscape will be deemed valid.

57 | P a g e

Change the threshold 100% and run the analysis and review the results. The run list
(not shown here) should contain multiple rows, one for each randomly generated
window. The SUMMARY in the Activity log should indicate that there were a total of 100
windows generated. The image below shows the result for my particular run, in which
FRAGSTATS generated 100 random windows, but allowing them to overlap. The main
difference between this run and the previous run is that the random windows are
allowed to be closer to the edge of the landscape of interest because they can contain any
percentage of border/nodata, so long as the focal cells still fall within the landscape of
interest and the windows do not extend beyond the edge of the rectangular input grid.

58 | P a g e

	Tutorial 1. Setting Up Software and Inspecting Grids
	1. Download and install FRAGSTATS
	2. [Optional] Setup your Computer for use with ESRI ArcGIS
	3. Inspect the grids
	/1. Open FRAGSTATS
	2. Create a New model
	3. Import a grid
	4. Optionally, input a class descriptors table
	5. Specify additional parameters for the analysis
	6. Select metrics
	7. Conditionally, input additional common tables
	8. Optionally, save the model
	9. Run the model
	10. Browse the results

	Tutorial 3: Batch processing multiple grids
	1. Open FRAGSTATS
	2. Open a FRAGSTATS model
	3. Create and input a batch file
	4. Complete the model parameterization
	5. Run the model and browse the results

	Tutorial 4: Moving window analysis
	1. Open FRAGSTATS
	2. Create a FRAGSTATS model
	3. Import a grid
	4. Specify additional parameters for the analysis
	5. Modify the class descriptors table and import
	6. Select metrics
	7. Run the model
	8. View the results

	Tutorial 5: Running the command line version from R
	1. Create a FRAGSTATS model
	2. Open R and run the script provided

	Tutorial 6. Using sampling strategies to analyze sub-landscapes
	1. Open FRAGSTATS
	2. Create a FRAGSTATS model
	3. Import a grid
	4. Optionally, input common tables
	5. Select metrics
	6. Specify additional parameters for the analysis
	6.1 User-provided tiles
	6.2 Uniform tiles
	6.3 User-provided points
	6.4 Random points without overlap
	6.5 Random points with overlap

